COS 423 Lecture 1

Counting in Binary

Amortized and Worst-Case Efficiency

© Robert E. Tarjan, 2011

Number	Binary	Total cost	Cost to add 1
0	0	0	1
1	1	1	2
2	10	3	1
3	11	4	3
4	100	7	1
5	101	8	2
6	110	10	1
7	111	11	4
8	1000	15	1
9	1001	16	

Total cost to count to *n*

Cost to add 1 = number of trailing 1's + 1 = decrease in number of 1's + 2

Worst-case cost to add 1: lg(n + 1) + 1Total cost to count to *n*: nlgn ?

Amortize: to liquidate a debt by installment payments.

From Medieval Latin: to reduce to the point of death.

In analysis of algorithms: to pay for the total cost of a sequence of operations by charging each operation an equal (or appropriate) amount.

(A little stretch, but there you have it.)

Amortized Efficiency

Coin-operated computer bit flip costs \$1

\$2 per addition suffices: unspent $= #1's \ge 0$

total cost = 2n - #1's $\leq 2n$

Amortization (banker)

Assign \$ to each operation (amortized cost) Keep track of savings (or borrowings) in state of data structure If no debt after all operations, total cost ≤ sum of amortized costs

Amortization (physicist)

Switch perspective: start with savings, derive cost per operation Assign "potential" Φ to each state of data structure

Define "amortized cost" of an operation to be actual cost plus net change in potential:

$$a_i = t_i + \Phi_i - \Phi_{i-1}$$

Thus
$$t_i = a_i + \Phi_{i-1} - \Phi_i$$

total actual cost = total amortized cost + initial Φ – final Φ \leq total amortized cost if initial Φ = 0, final $\Phi \geq 0$ (no net borrowing)

Binary counting: $\Phi = \text{number of 1's}$ $\Phi_0 = 0, \ \Phi_n \ge 0$ Amortized cost to add one = 2 \rightarrow total actual cost $\le 2n$

Frequency of multiple carries

Observation: a cost of k + 1 or more occurs at most $n/2^k$ times (out of n)

Proof of observation via a potential function: Fix *k*. Let $\Phi = n \mod 2^k$. Each add increases Φ by one, unless cost is k + 1 or more. (We call the add *expensive*.) In this case $n \mod 2^k = 2^k - 1$, so Φ decreases by $2^k - 1$. This can happen at most $n/2^k$ times out of n: $\Phi = n - e2^k \ge 0$, where e =#expensive adds. Carry-free binary addition and borrow-free subtraction

Redundant Binary Numbers

Allow 2 as a digit as well as 0, 1 Number representations are no longer unique: 210 = 1010 = 1002

How does this help?

22222 + 1 = 111111?

Need to eliminate adjacent 2's

Regularity: At least one 0 between each pair of 2's (adjacent or not)

Regular: 120102, 211 Not regular: 2112021 Fix for addition: $02 \rightarrow 10$ $12 \rightarrow 20$

To add one: Fix rightmost 2. Add 1 to rightmost digit.

112021 + 1 = 112101 + 1 = 11210221101201 + 1 = 21102001 + 1 = 21102002

Correct, maintains regularity, and carry-free: changes at most three digits

Implementation

Stack of positions of 2's, rightmost on top:

20111021110121101 16, 10, 4 (top)

Can update stack in O(1) time

What about borrow-free subtraction?

Need to avoid adjacent 0's, which force borrowing

Strict regularity: 0's and 2's alternate, ignoring 1's

Problem: fix for addition can violate strict regularity

Strictly regular addition: If rightmost non-1 is a 2, fix it. Add 1 to rightmost digit.

21101201 + 1 = 21101202 (no fix)

Fix for subtraction: $10 \rightarrow 02$ $20 \rightarrow 12$ (look familiar?)

To subtract one: If rightmost non-1 is a 0, fix it. Subtract 1 from rightmost digit.

112021 - 1 = 112020 (no fix) 2110120 - 1 = 2110112 - 1 = 2110111

Implementation: Stack of non-1's, rightmost on top

211011120110121 14, 11, 7, 6, 3, 1 (top)

Addition and subtraction are correct, maintain strict regularity, and are carry-free and borrow-free, respectively. Proof: A fix does not change the value of the number. A fix preserves regularity:
...21*021* ↔ ...21*101*
...01*121* ↔ ...01*201*
(1* = zero or more 1's.) After an add-fix, the rightmost digit is not a 2, so no carry. After a subtract-fix, the rightmost digit is not a 0, so no borrow.

Adding or subtracting 1 changes at most three digits.

Extensions

Addition or subtraction of two numbers in worstcase time proportional to the length of the smaller one

Addition or subtraction of an arbitrary power of 2 (a 1 in position *k*)

Use of any three consecutive digits, e.g. $\{-1, 0, 1\}, \{2,3,4\}$

Q: If strict regularity works, why bother with regularity?

A1: If no subtractions, add is simpler and extra stack is smaller.

A2: Design space is worth exploring. Options may be incomparable.