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Number     Binary        Total cost     Cost to add 1

0                 0                   0                        1

1                 1                   1                        2

2               10                   3                        1

3               11                   4                        3

4             100                   7                        1

5             101                   8                        2

6             110                 10                        1

7             111                 11                        4                     

8           1000                 15                        1

9           1001                 16                         



Total cost to count to n

Cost to add 1 = number of trailing 1’s + 1

= decrease in number of 1’s + 2

Worst-case cost to add 1: lg(n + 1) + 1Worst-case cost to add 1: lg(n + 1) + 1

Total cost to count to n: nlgn ?   



Amortize: to liquidate a debt by installment 
payments.

From Medieval Latin: to reduce to the point

of death.

In analysis of algorithms: to pay for the total cost In analysis of algorithms: to pay for the total cost 
of a sequence of operations by charging each 
operation an equal (or appropriate) amount.

(A little stretch, but there you have it.)



Amortized Efficiency

Coin-operated computer

bit flip costs $1

$2 per addition suffices:$2 per addition suffices:

unspent $  = #1’s ≥ 0

total cost = 2n - #1’s

≤ 2n



Amortization (banker)

Assign $ to each operation (amortized cost)

Keep track of savings (or borrowings) in state of 

data structure

If no debt after all operations, If no debt after all operations, 

total cost ≤ sum of amortized costs



Amortization (physicist)

Switch perspective: start with savings,

derive cost per operation

Assign “potential” Φ to each state of data 
structure

Define “amortized cost” of an operation to be 
actual cost plus net change in potential:

ai = ti + Φi – Φi – 1 

Thus  ti = ai + Φi – 1 – Φ i



total actual cost = 

total amortized cost + initial Φ – final Φ

≤ total amortized cost

if initial Φ = 0, final Φ ≥ 0

(no net borrowing)

Binary counting: Φ = number of 1’s

Φ0 = 0, Φn ≥ 0

Amortized cost to add one = 2

→ total actual cost ≤ 2n



Frequency of multiple carries

Observation: a cost of k + 1 or more occurs at most

n/2k times (out of n)

Proof of observation via a potential function: Fix Proof of observation via a potential function: Fix 
k. Let Φ = n mod 2k.  Each add increases Φ by 
one, unless cost is k + 1 or more.  (We call the add 
expensive.)  In this case n mod 2k = 2k – 1, so Φ
decreases by 2k – 1.  This can happen at most
n/2k times out of n: Φ = n - e2k ≥ 0, where e = 
#expensive adds.



Carry-free binary addition

and borrow-free subtractionand borrow-free subtraction



Redundant Binary Numbers

Allow 2 as a digit as well as 0, 1

Number representations are no longer unique:

210 = 1010 = 1002

How does this help?

22222 + 1 = 111111?



Need to eliminate adjacent 2’s

Regularity: At least one 0 between 

each pair of 2’s (adjacent or not)

Regular: 120102, 211

Not regular: 2112021



Fix for addition:

02 → 10

12 → 20

To add one:

Fix rightmost 2.

Add 1 to rightmost digit.

112021 + 1 = 112101 + 1 = 112102

21101201 + 1 = 21102001 + 1 = 21102002

Correct, maintains regularity, and carry-free:

changes at most three digits



Implementation

Stack of positions of 2’s, rightmost on top:

20111021110121101

16, 10, 4 (top)

Can update stack in O(1) time



What about borrow-free subtraction?

Need to avoid adjacent 0’s, which force borrowing

Strict regularity: 0’s and 2’s alternate, ignoring 1’s

Problem: fix for addition can violate strict regularity

Strictly regular addition:

If rightmost non-1 is a 2, fix it.

Add 1 to rightmost digit.

21101201 + 1 = 21101202 (no fix)



Fix for subtraction:

10 → 02

20 → 12

(look familiar?)

To subtract one:

If rightmost non-1 is a 0, fix it.If rightmost non-1 is a 0, fix it.

Subtract 1 from rightmost digit.

112021 – 1 = 112020 (no fix)

2110120 – 1 = 2110112 – 1 = 2110111



Implementation: 

Stack of non-1’s, rightmost on top

211011120110121

14, 11, 7, 6, 3, 1 (top)

Addition and subtraction are correct, maintain 

strict regularity, and are carry-free and 

borrow-free, respectively.



Proof: A fix does not change the value of the 
number.  A fix preserves regularity:

…21*021* ↔ …21*101*

…01*121* ↔ …01*201*

(1* = zero or more 1’s.)  After an add-fix, the 
rightmost digit is not a 2, so no carry.  After a 
subtract-fix, the rightmost digit is not a 0, so no subtract-fix, the rightmost digit is not a 0, so no 
borrow.

Adding or subtracting 1 changes at most three 
digits.



Extensions

Addition or subtraction of two numbers in worst-
case time proportional to the length of the 

smaller one

Addition or subtraction of an arbitrary power of 2Addition or subtraction of an arbitrary power of 2

(a 1 in position k)

Use of any three consecutive digits, e. g.

{–1, 0, 1}, {2,3,4}



Q: If strict regularity works, why bother with 

regularity?

A1: If no subtractions, add is simpler and extra 

stack is smaller.stack is smaller.

A2: Design space is worth exploring.  Options 

may be incomparable.


